• PlantaCorp

The fascinating world of liposomal Supplements

All that we talk about at PlantaCorp are liposomes and liposomal supplements. In our previous blog post, which you can find here, we probably piqued your interest around liposomal supplements. The blog looked into whether or not liposome-encapsulated ingredients are a better food supplement alternative. But how much do you know about liposomes? This blog post will explain more about liposome structure. We will also explain the manufacturing, metabolism and associated safety concerns.

What is a Liposome? Man-made phospholipid bilayer spheres

In Greek, the word ‘Lipos’ means fat and ‘soma’ means body. Therefore ‘liposome’ literally means a body of fat. Fat molecules are very important to understand when looking at the principle and advantages of a liposome.

Phospholipids in liposomes

Phospholipids make up the liposomes within our liposomal supplements. Fatty acid chains attached to a glycerol backbone make up phospholipids. However, phospholipids and glycerol backbone (diacylglycerol) only have two connecting fatty acids. While fats have three fatty acids (triglycerides). A modified phosphate group occupies the third carbon of the backbone in phospholipids. A phospholipid thus has a phosphoglycerol group that comprises the ‘head’.

Having the choice of saturated or unsaturated fatty acids, the two fatty acid side chains comprise the ‘tail’ of a phospholipid (1).

Phospholipid Structure

A typical phospholipid structure.

A phosphate group composes the phospho head. This group is attached to one carbon of the glycerol backbone, making the head water-soluble. Two fatty acid side chains make up the lipid tail and also attach to to the glycerol backbone. In the image; a saturated fatty acid is depicted by the straight line, an unsaturated fatty acid is depicted by the kinked line. The tail is thus water-repellent.

Liposomes versus micelles

The composition of phospholipids is integral to their behavior in water. This is crucial to their role in liposomal supplements, which we’ll explain later. Having a negative charge, the phosphate group makes the head hydrophilic (water-loving). The tails on the other hand, have no charge on them and are thus hydrophobic (water-repelling). Thus, when added to water, phospholipids will spontaneously rearrange. This rearrangement into a single layer sphere is called a micelle. In a micelle, only the hydrophilic phosphate heads are in contact with water.

Micelle versus a liposome

A micelle versus a liposome

On the left is a micelle composed of a single layer. This layer is of spontaneously arranged phospholipids. On the right is a representation of a man-made, phospholipid bilayer liposome. Our liposomal supplements are produced having this phospholipid bilayer.

How liposomes are different from micelles

A liposome, while resembling a micelle, is very different. The difference is in that it is a sphere composed of one or more phospholipid bilayers. In order to arrange into a bilayer, we need energy in the form of heat, homogenization or ultrasonic waves.

“Liposomes are a bubble-like structure composed of molecules called phospholipids. In the outer shell , the phospholipids’ water-loving heads face outside. In the inner shell, the heads face an aqueous core. The phospholipid tails are between these two layers. “

Our liposome manufacturing process for the production of liposomal supplements

As afore mentioned, a liposome is artificially created. A plant-based lecithin or chemically synthesized phospholipid is usually combined with water. This is then combined with the active ingredient (vitamin, mineral or phytoextract) in precise ratios. The mixture is then treated with an external form of energy. This results in the encapsulation of the active ingredient within liposomes. This is the principle behind our liposomal supplements. We encapsulate Hydrophilic (water-loving and fat-repelling) ingredients in the aqueous core. Lipophilic (fat-loving and water-repelling) ingredients are, on the other hand, encapsulated within the lipid bilayer of the liposome. The liposome and its encapsulated ingredients are themselves, fully water-soluble at this point (2,3).

The encapsulation of fat-soluble and water-soluble ingredients by a liposome

The absorption of liposomal supplements by the human body

The absorption of lipids and phospholipids by the small intestine is a well known process. Recent studies have shown that similar digestion and absorption of liposomes and the ingredients that they encapsulate, takes place (4,5). The small intestine typically digest the phospholipids and not the stomach. Hence, liposomes protect the encapsulated ingredients from gastric digestion. This results in their protection from a potential loss of activity. The gastric tract is also protected from the potential inflammatory effects of the encapsulated ingredient.

Absorption of liposomes

The gastric stability and intestinal absorption of liposomes are highest at the nanoscopic level (>150nm). This is because the small size increases the retention time in the first part of the small intestine. This, in turn, allows for increased absorption and decreased excretion of the active ingredient.

Might be of interest - PlantaCorp's Liposome Product Process

How liposomes and liposomal supplements reach the bloodstream

Finally, the accompaniment of ingredients by lipid molecules can divert uptake. This diversion affects at least a part of the ingredients. Ingredients that pass through the liver are further digested. This digestion leads to a potential loss of ingredients. Diverting the ingredients towards the intestinal lymphatic system, avoiding the portal vein means that rather than passing through the liver, the ingredient directly reaches the bloodstream. Reaching the bloodstream without passing the liver, increases their bioavailability.

Liposomes: Increasing the bioavailability of encapsulated ingredients

Bioavailability refers to the amount of ingredient that is available in the bloodstream after its consumption. For example, if you eat 100 mg of vitamin C, the detectable amount in your blood will indicate its bioavailability. The closer the bioavailability of a certain ingredient is to 100%, the more profound is its effect. This is because more of the ingredient will be able to reach its site of action. A typical site of action for active ingredients could be your muscles.

Increasing bioavailability through liposomal encapsulation

Several studies have proven the increased bioavailability upon liposomal encapsulation (6,7,8). This includes encapsulation of water-soluble ingredients like Vitamin C. However, even more importantly, fat-soluble ingredients like curcumin. We can attribute the increased bioavailability to liposomes’ increased protection and absorption

Liposomal supplement’s added protection

The added protection provided by liposomes leads to a lower required dose. The higher bioavailability of the ingredients means higher absorption.This decreases the possible side effects of ingredient overdosing.

The human body’s liposomal excretion process

The phospholipids in the liposomes are typically excreted through faeces or urine. Alternatively, various tissues can absorb the liposomes for their metabolic potential.

Can liposomal supplements cause weight gain?

We are often asked if liposomal supplements cause weight gain. This questions is asked due to the fact that liposomes are made of fatty acids. However, studies so far, have shown no such effect of phospholipids. On the contrary, phospholipids have been shown to reduce the absorption of cholesterol. Cholesterol is the molecule that makes you put on weight (9). While we can not claim that liposomes are a weight-loss remedy, we can assure you that we have not come across any studies linking an increase in body fat to liposome consumption.

Are liposomal supplements safe?

There are no known safety concerns associated with the liposomal supplements. Liposomes have been a drug delivery vehicle for more than two decades now. In this time, there have been no known side effects from the liposomes themselves.

The history of liposomal supplements

Doxil® was first approved in 1995 as liposomal doxorubicin for anti-cancer therapy (10). Since then, liposomes have shown promise as gene delivery systems for clinical gene therapy. They have also been especially beneficial for the delivery of poorly water-soluble substances. Ingredients such as curcumin, in the dietary supplement industry, greatly benefit from liposomal delivery (7).

Further, the use of naturally-derived phospholipids such as sunflower or soy lecithins in the manufacture of liposomes, makes them biocompatible and non-toxic (10). Liposomes also do not elicit an immune response when administered orally, intramuscularly or intravenously.

Liposomes are thus safe to consume.

Key takeaways about liposomal supplements:

Phospholipid Bilayers

Liposomes are synthetic phospholipid bilayer nanospheres. Phospholipids composed of water-loving phospho heads and water-repelling lipid tails, make liposomes water-soluble.

Liposomal supplements protection

Liposomes are good vehicles for the transport of ingredients because they protect the encapsulated ingredients from gastric digestion, increase intestinal absorption and thus increase the ingredients’ bioavailability.

Liposomal supplements are safe

Liposomes are biocompatible and non-toxic and are thus safe to consume.


  • Accessed on 26 October 2020.

  • Mozafari MR. Liposomes: An overview of manufacturing techniques. Cell. Mol. Bio. Letters (2005); 10: 711–719.

  • Patil YP & Jadhav S. Novel methods for liposome preparation. Chem. Phys. Lipids (2014); 177: 8–18.

  • Porter CJH, Trevaskis NL & Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nature Reviews: Drug discovery (2007); 6: 231- 248.

  • Liu W, Li D, Dong Z et al. Insight into the in vivo translocation of oral liposomes by fluorescence resonance energy transfer effect. Int. J. Pharmaceutics (2020); 587: 119682.

  • Davis JL, Paris HL, Beals JW et al. Liposomal-encapsulated Ascorbic Acid: Influence on Vitamin C Bioavailability and Capacity to Protect Against Ischemia-Reperfusion Injury. Nutrition and Metabolic Insights (2016);9: 25–30.

  • Prasad S, Tyagi AK & Aggarwal BB. Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: The Golden Pigment from Golden Spice. Cancer Research and Treatment (2014); 46(1).

  • Goktas Z, zu Y, Abbasi M et al. Recent advances in nano-encapsulation of phytochemicals to combat obesity and its comorbidities. J. Agric. Food Chem. (2020); 68 (31): 8119–8131.

  • Cohn JS, Kamili A, Wat E et al. Dietary Phospholipids and Intestinal Cholesterol Absorption. Nutrients (2010); 2(2): 116–127.

  • Zylberberg C & Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape, Drug Delivery (2016); 23:9, 3319–3329.

20 views0 comments

Recent Posts

See All

©2019 by PlantaCorp GmbH.